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Introduction

The proper study of matrix computations begins with the study of the
matrix-matrix multiplication problem.

Although this problem is simple mathematically it is very rich from the
computational point of view. We begin by looking at the several ways that
the matrix multiplication problem can be organized.

The “language” of partitioned matrices is established and used to
characterize several linear algebraic “levels” of computation.

P. Sam Johnson Basic Algorithms and Notation 2/44



Basic Algorithms and Notation

Matrix computations are built upon a hierarchy of linear algebraic
operations.

Dot products involve the scalar operations of addition and multiplication.
Matrix-vector multiplication is made up of dot products.

Matrix-matrix multiplication amounts to a collection of matrix-vector
products. All of these operations can be described in algorithmic form or
in the language of linear algebra. Our primary objective in this section is
to show how these two styles of expression complement each another.

Along the way we pick up notation and acquaint the reader with the kind
of thinking that underpins the matrix computation area.

The discussion revolves around the matrix multiplication problem, a
computation that can be organized in several ways.
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Matrix Notation

Let R denote the set of real numbers. We denote the vector space of all
m-by-n real matrices by Rm×n :

A ∈ Rm×n ⇐⇒ A = (aij) =

a11 · · · a1n
...

...
am1 · · · amn

 aij ∈ R.

If a capital letter is used to denote a matrix (e.g. A,B,∆), then the
corresponding lower case letter with subscript ij refers to the (i , j) entry
(e.g., aij , bij , δij). As appropriate, we also use the notation [A]ij and A(i , j)
to designate the matrix elements.
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Matrix Operations

Basic matrix operations include transposition (Rm×n → Rn×m),

C = AT =⇒ cij = aji ,

addition (Rm×n × Rm×n → Rm×n),

C = A + B =⇒ cij = aij + bij ,

scalar-matrix multiplication, (R× Rm×n → Rm×n),

C = αA =⇒ cij = αaij ,

and matrix-matrix multiplication (Rm×p × Rp×n → Rm×n),

C = AB =⇒ cij =
r∑

k=1

aikbkj .

These are the building blocks of matrix computations.
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Vector Notation

Let Rn denote the vector space of real n-vectors:

x ∈ Rn ⇐⇒ x =

x1...
xn

 xi ∈ R.

We refer to xi as the ith component of x . Depending upon context, the
alternative notations [x ]i and x(i) are sometimes used.

Notice that we are identifying Rn with Rn×1 and so the members of Rn

are column vectors. On the other hand, the elements of R1×n vectors:

x ∈ R1×n ⇐⇒ x = (x1, . . . , xn).

If x is a column vector, then y = xT is a row vector.
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Vector Operations

Assume a ∈ R, x ∈ Rn, and y ∈ Rn. Basic vector operations include
scalar-vector multiplication,

z = ax =⇒ zi = axi ,

vector addition,
z = x + y =⇒ zi = xi + yi ,

the dot product (or inner product),

c = xT y =⇒ c =
n∑

i=1

xiyi ,

and vector multiply (or the Hadamard product)

z = x ∗ y =⇒ zi = xiyi .
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Vector Operations

Another very important operation which we write in “update form” is the
saxpy:

y = ax + y =⇒ yi = axi + yi

Here, the symbol “=” is being used to denote assignment, not
mathematical equality. The vector y is being updated.

The name “saxpy” is used in LAPACK, a software package that
implements many of the algorithms in this book.

One can think of “saxpy” as a mnemonic for “scalar a x plus y .”
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The Computation of Dot Products and Saxpys

We have chosen to express algorithms in a stylized version of the MATLAB
language. MATLAB is a powerful interactive system that is ideal for matrix
computation work. We gradually introduce our stylized MATLAB notation
in this chapter beginning with an algorithm for computing dot products.

Algorithm 1.1.1 (Dot Product) If x , y ∈ Rn, then this algorithm
computes their dot product c = xT y .

c = 0
for i=1:n

c = c + x(i)y(i)

end

The dot product of two n-vectors involves n multiplications and n
additions. It is an “O(n)” operation, meaning that the amount of work is
linear in the dimension. The saxpy computation is also an O(n) operation,
but it returns a vector instead of a scalar.
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The Computation of Dot Products and Saxpys (Contd...)

Algorithm 1.1.2 (Saxpy) If x , y ∈ Rn and a ∈ R, then this algorithm
overwrites y with ax + y .

for i=1:n
y(i) = ax(i) + y(i)

end

It must be stressed that the algorithms are encapsulations of critical
computational ideas and not “production codes.”
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Matrix-Vector Multiplication and the Gaxpy

Suppose A ∈ Rm×n and that we wish to compute the update

y = Ax + y

where x ∈ Rn and y = Rm are given. This generalized saxpy operation is
referred to as a gaxpy. A standard way that this computation proceeds is
to update the components one at a time:

yi =
n∑

j=1

aijxj + yi i = 1 : m.
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Matrix-Vector Multiplication and the Gaxpy (Contd...)

This gives the following algorithm.

Algorithm 1.1.3 (Gaxpy: Row Version) If A ∈ Rm×n, x ∈ Rn, and
y ∈ Rm, then this algorithm overwrites y with Ax + y .

for i=1:m
for i=1:n

y(i) = A(i , j)x(j) + y(i)

end
end
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Matrix-Vector Multiplication and the Gaxpy (Contd...)

An alternative algorithm results if we regard Ax as a linear combination of
A’s columns, e.g.,1 2

3 4
5 6

[7
8

]
=

1 · 7 + 2 · 8
3 · 7 + 4 · 8
5 · 7 + 6 · 8

 = 7

1
3
5

+ 8

2
4
6

 =

23
53
83

 .
Algorithm 1.1.4 (Gaxpy: Column Version) If A ∈ Rm×n, x ∈ Rn, and
y ∈ Rm, then this algorithm overwrites y with Ax + y .

for j=1:n
for i=1:m

y(i) = A(i , j)x(j) + y(i)

end
end
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Matrix-Vector Multiplication and the Gaxpy (Contd...)

Note that the inner loop in either gaxpy algorithm carries out a saxpy
operation.

The column version was derived by rethinking what matrix-vector
multiplication “means” at the vector level, but it could also have been
obtained simply by interchanging the order of the loops in the row version.

In matrix computations, it is important to relate loop interchanges to the
underlying linear algebra.

Algorithms 1.1.3 and 1.1.4 access the data in A by row and by column
respectively.

To highlight these orientations more clearly we introduce the language of
partitioned matrices.
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Partitioning a Matrix into Rows and Columns

From the row point of view, a matrix is a stack of row vectors:

A ∈ Rm×n ⇐⇒ A =

r
T
1
...
rTm

 rk ∈ Rn. (1)

This is called a row partition of A. Thus, if we row partition1 2
3 4
5 6

 ,
then we are choosing to think of A as a collection of rows with

rT1 =
[
1 2

]
, rT2 =

[
3 4

]
, rT3 =

[
5 6

]
.
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Matrix-Vector Multiplication and the Gaxpy (Contd...)

With the row partitioning (1) Algorithm 1.1.3 can be expressed as follows:

for i=1:m
yi = rTi x + y(i)

end
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Partitioning a Matrix into Rows and Columns (Contd...)

Alternatively, a matrix is a collection of column vectors:

A ∈ Rm×n ⇐⇒ A = [c1, . . . , cn], ck ∈ Rm. (2)

We refer to this as a column partition of A.

In the 3-by-2 example above, we thus would set c1 and c2 to be the first
and second columns of A respectively:

c1 =

1
3
5

 c2 =

2
4
6

 .
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Partitioning a Matrix into Rows and Columns (Contd...)

With (2) we see that Algorithm 1.1.4 is a saxpy procedure that accesses A
by columns:

for j=1:n
y = xjcj + y

end

In this context appreciate y as a running vector sum that undergoes
repeated saxpy updates.
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The Colon Notation

A handy way to specify a column or row of a matrix is with the “colon”
notation. If A ∈ Rm×n, then A(k , :) designates the kth row, i.e.,

A(k , :) = [ak1, . . . , akn].

The kth column is specified by

A(:, k) =

a1k...
amk

 .
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The Colon Notation

With these conventions we can rewrite Algorithms 1.1.3 and 1.1.4 as

for i=1:m
y(i) = A(i , :)x + y(i)

end

and

for j=1:n
y = x(j)A(:, j) + y

end

respectively. With the colon notation we are able to suppress iteration
details. This frees us to think at the vector level and focus on larger
computational issues.
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The Outer Product Update

As a preliminary application of the colon notation, we use it to understand
the outer product update

A = A + xyT , A ∈ Rm×n, x ∈ Rm, y ∈ Rn.

The outer product operation xyT “looks funny” but is perfectly legal, e.g.,1
2
3

 [4 5
]

=

 4 5
8 10

12 15

 .
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The Outer Product Update

This is because xyT is the product of two “skinny” matrices and the
number of columns in the left matrix x equals the number of rows in the
right matrix yT . The entries in the outer product update are prescribed by

for i=1:m
for j=1:n

aij = aij + xiyj

end
end
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The Outer Product Update (Contd...)

The mission of the j loop is to add a multiple of yT to the i-th row of A,
i.e.,

for i=1:m
A(i , :) = A(i , :) + x(i)yT

end

On the other hand, if we make the i-loop the inner loop, then its task is to
add a multiple of x to the jth column of A :

for j=1:n
A(:, j) = A(:, j) + y(j)x

end

Note that both outer product algorithms amount to a set of saxpy
updates.
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Matrix-Matrix Multiplication

Consider the 2-by-2 matrix-matrix multiplication AB. In the dot product
formulation each entry is computed as a dot product:[

1 2
3 4

] [
5 6
7 8

]
=

[
1 · 5 + 2 · 7 1 · 6 + 2 · 8
3 · 5 + 4 · 7 3 · 6 + 4 · 8

]
.

In the saxpy version each column in the product is regarded as a linear
combination of columns of A :[

1 2
3 4

] [
5 6
7 8

]
=

[
5

[
1
3

]
+ 7

[
2
4

]
, 6

[
1
3

]
+ 8

[
2
4

]]
.
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Matrix-Matrix Multiplication

Finally, in the outer product version, the result is regarded as the sum of
outer products: [

1 2
3 4

] [
5 6
7 8

]
=

[
1
3

] [
5 6

]
+

[
2
4

] [
7 8

]
.

Although equivalent mathematically, it turns out that these versions of
matrix multiplication can have very different levels of performance because
of their memory traffic properties. This matter is pursued in §1.4. For
now, it is worth detailing the above three approaches to matrix
multiplication because it gives us a chance to review notation and to
practice thinking at different linear algebraic levels.
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Scalar-Level Specifications

To fix the discussion we focus on the following matrix multiplication
update:

C = AB + C A ∈ Rm×p,B ∈ Rp×n,C ∈ Rm×n.

The starting point is the familiar triply-nested loop algorithm:
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Scalar-Level Specifications

Algorithm 1.1.5 (Matrix Multiplication: ijk Variant) If
A ∈ Rm×p,B ∈ Rp×n, and C ∈ Rm×n are given, then this algorithm
overwrites C with AB + C .

for i=1:m
for j=1:n

for k=1:p
C (i , j) = A(i , k)B(k , j) + C (i , j)

end
end

end

This is the “ijk variant” because we identify the rows of C (and A) with i ,
the columns of C (and B) with j , and the summation index with k .
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Scalar-Level Specifications (Contd...)

We consider the update C = AB + C instead of just C = AB for two
reasons. We do not have to bother with C = 0 initializations and updates
of the form C = AB + C arise more frequently in practice.

The three loops in the matrix multiplication update can be arbitrarily
ordered giving 3! = 6 variations. Thus,

for j=1:n
for k=1:p

for i=1:m
C (i , j) = A(i , k)B(k , j) + C (i , j)

end
end

end

is the jki variant.
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Scalar-Level Specifications (Contd...)

Each of the six possibilities (ijk, jik, ikj , jki , kij , kji) features an inner loop
operation (dot product or saxpy) and has its own pattern of data flow.

For example, in the ijk variant, the inner loop oversees a dot product that
requires access to a row of A and a column of B. The jki variant involves
a saxpy that requires access to a column of C and a column of A. These
attributes are summarized in Table 1 along with an interpretation of what
is going on when the middle and inner loop are considered together.

Each variant involves the same amount of floating point arithmetic, but
accesses the A,B, and C data differently.
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Scalar-Level Specifications (Contd...)

Loop Order Inner Loop Middle Loop Inner Loop Data Access
ijk dot vector × matrix A by row, B by column
jik dot matrix × vector A by row, B by column
ikj saxpy row gaxpy B by row, C by row
jki saxpy column gaxpy A by column, C by column
kij saxpy row outer product B by row, C by row
kji saxpy column outer product A by column, C by column

Table: Matrix Multiplication: Loop Orderings and Properties
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A Dot Product Formulation

The usual matrix multiplication procedure regards AB as an array of dot
products to be computed one at a time in left-to-right, top-to-bottom
order. This is the idea behind Algorithm 1.1.5. Using the colon notation
we can highlight this dot-product formulation:

Algorithm 1.1.6 (Matrix Multiplication: Dot Product Version) If
A ∈ Rm×p, B ∈ Rp×n, and C ∈ Rm×n are given, then this algorithm
overwrites C with AB + C .

for i=1:m
for j=1:n

C (i , j) = A(i , :)B(:, j) + C (i , j)

end
end
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A Dot Product Formulation (Contd...)

In the language of partitioned matrices, if

A =

a
T
1
...
aTm

 ak ∈ Rp

and
B = [b1, . . . , bn] bk ∈ Rp

then Algorithm 1.1.6 has this interpretation:

for i=1:m
for j=1:n

cij = aTi bj + cij

end
end
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A Dot Product Formulation (Contd...)

Note that the “mission” of the j-loop is to compute the ith row of the
update. To emphasize this we could write

for i=1:m
cTi = aTi B + cTi

end

where

C =

c
T
1
...
cTm


is a row partitioning of C .
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A Dot Product Formulation (Contd...)

To say the same thing with the colon notation we write

for i=1:m
C (i , :) = A(i , :)B + C (i , :)

end

Either way we see that the inner two loops of the ijk variant define a
row-oriented gaxpy operation.
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A Saxpy Formulation

Suppose A and C are column-partitioned as follows

A = [a1, . . . , ap] aj ∈ Rm

C = [c1, . . . , cn] cj ∈ Rm.

By comparing jth columns in C = AB + C we see that

cj =

p∑
k=1

bkjak + cj , j = 1 : n.
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A Saxpy Formulation

These vector sums can be put together with a sequence of saxpy updates.

Algorithm 1.1.7 (Matrix Multiplication: Saxpy Version) If the
matrices A ∈ Rm×p,B ∈ Rp×n, and C ∈ Rm×n are given, then this
algorithm overwrites C with AB + C .

for j=1:n
for k=1:p

C (:, j) = A(:, k)B(k , j) + C (:, j)

end
end

Note that the k-loop oversees a gaxpy operation:

for j=1:n
C (:, j) = AB(:, j) + C (:, j)

end
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An Outer Product Formulation

Consider the kij variant of Algorithm 1.1.5:

for k=1:p
for j=1:n

for i=1:m
C (i , j) = A(i , k)B(k, j) + C (i , j)

end
end

end
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An Outer Product Formulation

The inner two loops oversee the outer product update C = akb
T
k + C

where

A = [a1, . . . , ap] and B =

b
T
1
...
bTp

 (3)

with ak ∈ Rm and bk ∈ Rn. We therefore obtain

Algorithm 1.1.8 (Matrix Multiplication: Outer Product Version) If
A ∈ Rm×p,B ∈ Rp×n, C ∈ Rm×n are given, then this algorithm overwrites
C with AB + C .

for k=1:p
C = A(:, k)B(k , :) + C

end

This implementation revolves around the fact that AB is the sum of p
outer products.
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The Notion of “Level”

The dot product and saxpy operations are examples of “level-1”
operations. Level-1 operations involve an amount of data and an amount
of arithmetic that is linear in the dimension of the operation. An m-by-n
outer product update or gaxpy operation involves a quadratic amount of
data (O(mn)) and a quadratic amount of work (O(mn)). They are
examples of ”“level-2” operations.

The matrix update C = AB + C is a “level-3” operation. Level-3
operations involve a quadratic amount of data and a cubic amount of
work. If A,B, and C are n-by-n matrices, then C = AB + C involves
O(n2) matrix entries and O(n3) arithmetic operations.
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The Notion of “Level”

The design of matrix algorithms that are rich in high-level linear algebra
operations is a recurring theme in the book.

For example, a high performance linear equation solver may require a
level-3 organization of Gaussian elimination.

This requires some algorithmic rethinking because that method is usually
specified in level-1 terms, e.g., “multiply row 1 by a scalar and add the
result to row 2.”
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A Note on Matrix Equations

In striving to understand matrix multiplication via outer products, we
essentially established the matrix equation

AB =

p∑
k=1

akb
T
k

where the ak and bk are defined by the partitionings in (3).

Numerous matrix equations are developed in subsequent chapters.
Sometimes they are established algorithmically like the above outer
product expansion and other times they are proved at the ij-component
level. As an example of the latter, we prove an important result that
characterizes transposes of products.
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A Note on Matrix Equations (Contd...)

Theorem 1.

If A ∈ Rm×p and B ∈ Rp×n, then (AB)T = BTAT .

Proof: If C = (AB)T , then

cij = [(AB)T ]ij = [AB]ji =

p∑
k=1

ajkbki .

On the other hand, if D = BTAT , then

dij = [BTAT ]ij =

p∑
k=1

[BT ]ik [AT ]kj =

p∑
k=1

bkiajk .

Since cij = dij for all i and j , it follows that C = D.

Scalar-level proofs such as this one are usually not very insightful.
However, they are sometimes the only way to proceed.
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Complex Matrices

From time to time computations that involve complex matrices are
discussed. The vector space of m-by-n complex matrices is designated by
Cm×n. The scaling, addition, and multiplication of complex matrices
corresponds exactly to the real case. However, transposition becomes
conjugate transposition:

C = AH =⇒ cij = aji .

The vector space of complex n-vectors is designated by Cn. The dot
product of complex n-vectors x and y is prescribed by

s = xHy =
n∑

i=1

x iyi .

Finally, if A = B + iC ∈ Cm×n, then we designate the real and imaginary
parts of A by Re(A) = B and Im(A) = C respectively.
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